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Several recent works on quantum criticality beyond the Landau-Ginzburg-Wilson paradigm have led to a
number of field theories, potentially important for certain two-dimensional magnetic insulating systems, where
criticality is not very well understood. This situation highlights the need for nonperturbative information about
criticality in two spatial dimensions �three space-time dimensions�, which is a longstanding challenge. As a
step toward addressing these issues, we present evidence that the O�4� vector model is dual to a theory of Dirac
fermions coupled to both SU�2� and U�1� gauge fields. Both field theories arise as low-energy long-wavelength
descriptions of a frustrated XY model on the triangular lattice. Abelian boson-vortex duality of the lattice
model, together with the emergence of larger non-Abelian symmetry at low energies, leads to this rare example
of duality in two spatial dimensions involving non-Abelian global symmetry and fermions but without super-
symmetry. The duality can also be viewed as a bosonization of the Dirac fermion gauge theory.
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I. INTRODUCTION

Recent theoretical progress on quantum criticality in two
spatial dimensions �d=2� has elucidated a number of critical
phenomena beyond the Landau-Ginzburg-Wilson �LGW�
paradigm, particularly in the context of d=2 magnetic
insulators.1–4 In the LGW paradigm, one identifies one or
more order parameters and uses them to construct an
effective-field theory based on symmetry alone, and one
studies criticality in this theory. The field theories that arise
outside the LGW framework make up a much broader class
than those arising within it, often involve fermions and/or
gauge fields, and in general are less understood than those
theories arising within the LGW framework.

Most analytical understanding of quantum criticality in
d=2 is based on perturbative calculations in large-n and d
=3−� expansions, and it would be extremely useful to obtain
nonperturbative information that reduces our reliance on
these formal limits. This is even true within the LGW frame-
work, although, for example, the O�n� model is relatively
well understood after extensive numerical and analytical
studies.5 The field theories that arise beyond the LGW para-
digm have been much less studied, and nonperturbative in-
formation is more urgently needed. Toward this end, in this
paper I argue that the O�4� model �with some anisotropy
terms� is identical at low energies to an apparently quite
different theory involving fermions and gauge fields, which
is closely related to field theories describing one of the main
classes of non-LGW criticality, namely, critical spin liquids.
This relation is a rare example of duality in D=d+1=3
space-time dimensions involving non-Abelian global sym-
metries, non-Abelian gauge fields, and fermions, without su-
persymmetry.

The proposed relation, which is the main result of this
paper, is that the O�4� vector model is dual to a theory of
Nf =2 four-component Dirac fermions coupled to both SU�2�
and U�1� gauge fields. We dub the latter theory QCED3, as it
is in a sense a combination of D=3 quantum electrodynam-
ics �QED3� and quantum chromodynamics �QCD3� with
Nc=2 colors. To obtain this relation, we begin with an XY

antiferromagnet on the triangular lattice. This model can be
treated directly by a Landau theory approach, and this leads
to the O�4� field theory, with various anisotropy terms break-
ing the O�4� symmetry down to that of the original model.
Alternatively, using Abelian boson-vortex duality,6,7 the XY
model is mapped onto a dual lattice model, from which we
obtain QCED3 as a low-energy effective description. The
non-Abelian duality between the O�4� model and QCED3
thus emerges at low energy as a descendant of Abelian
boson-vortex duality on the lattice.

This result builds in a crucial way on work of Alicea et
al., where it was proposed, beginning with the same frus-
trated XY model, that the O�4� vector model is dual to Nf
=2 two-component Dirac fermions coupled to a U�1� Max-
well gauge field and a U�1� Chern-Simons gauge field.8

Later, this result was obtained from a different point of view
by Senthil and Fisher, who also argued that the O�4� model
with a topological term �� term at �=�� is dual to the same
U�1� gauge theory but with no Chern-Simons term.9 In these
examples, either the original or dual theory involves a topo-
logical term, which prevents the development of a controlled
large-n or d=3−� expansion. Because such expansions are
possible for the dual partners without topological terms,
these results are very useful for understanding their partners
that do have topological terms. However, because only one
dual partner can be directly analyzed, such dualities do not
lead to much additional understanding of the critical behav-
ior itself. The result presented here differs in the crucial re-
spect that both the original and dual theories lack topological
terms, and thus both admit controlled expansions, potentially
allowing greater insight into the critical properties.

In general, two field theories are dual when: �1� the two
theories have identical low-energy physics, and �2� the vari-
ables in the two theories are mutually nonlocal. That is, the
fields representing one theory cannot be written as a local
function of the fields in the other, and vice versa. The latter
condition excludes trivial local changes of variables. The
classic example of such a duality for D=3 is between the XY
model and the Abelian Higgs model.6,7 In general, it is
known how to construct explicit duality relations for models
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with Abelian global symmetries and Abelian gauge fields—
without fermions—in arbitrary space-time dimension.10

However, as in the field theories of interest here, many of the
most interesting cases involve non-Abelian global symme-
tries, non-Abelian gauge fields, and/or fermions, where no
general techniques exist to construct useful duality relations.
The primary exceptions are in D=2, where bosonization11

can be thought of as a duality, and in a number of supersym-
metric field theories in higher dimensions.12–15 The results of
this paper are a step toward understanding duality in a less
restrictive context.

It is important at this stage to make a distinction between
duality of field theories and duality of critical fixed points.
By duality of field theories, we mean that, as the parameters
of the two theories are varied, they have the same phases and
critical points, and all the same low-energy long-wavelength
behavior. Duality of fixed points, on the other hand, is a
stronger statement, and is most easily defined by discussing
its meaning in the context of the O�4�-QCED3 duality. The
O�4� model has a Wilson-Fisher fixed point which can be
accessed in a controlled fashion by a large-n expansion,
where one considers the O�n� model. Also, QCED3 has a
critical fixed point that can be accessed in the large-Nf ex-
pansion; we assume that this critical point survives down to
the value Nf =2 of interest here. By duality of fixed points,
we would mean in this case that the O�4� Wilson-Fisher fixed
point is identical to the QCED3 fixed point. However, it must
be emphasized that this statement need not hold for the two
field theories to be dual. It could be the case that the O�4�
and QCED3 fixed points are distinct, and, in each of the two
field theories, both fixed points are present. The O�4�-
QCED3 duality as proposed is to be understood primarily as
a duality between field theories. Whether it also leads to a
duality between the O�4� and QCED3 fixed points is a more
challenging question, and the available evidence does not
allow us to reach a firm conclusion. However, it is plausible
that the two fixed points are identical.

We now briefly outline the remainder of the paper. In Sec.
II we introduce the frustrated triangular lattice XY model,
and review the treatment of Ref. 8 up to the point where it
deviates from our approach. In particular, we discuss a direct
Landau theory approach, which leads to the O�4� field theory
�Sec. II A�, and the dual lattice model resulting from the
boson-vortex duality transformation �Sec. II B�. Next, we de-
scribe our route from the dual model to a continuum field
theory �Sec. III A�, and proceed to give a more precise state-
ment of the proposed duality �Sec. III B�. In the following
two sections, we present the principal evidence for the dual-
ity: in Sec. IV we set up a dictionary between operators in
the O�4� and QCED3 field theories, and in Sec. V we dem-
onstrate that the three stable phases of the original XY model
can be realized in QCED3. We conclude in Sec. VI with a
discussion of open issues and possible directions for future
work. Appendixes A and C contain various technical details.

II. PRELIMINARIES AND PRECURSORS

A. Direct analysis of XY model

The initial steps needed to obtain the O�4�-QCED3 dual-
ity have already been carried out by Alicea et al.8 so we

review their results here and in Sec. II B while introducing
notation that will be important later on. At a certain point,
which we identify in Sec. II B, our treatment deviates from
theirs. As we shall very briefly outline, following their route
leads instead to the duality between the O�4� model and
Dirac fermions coupled to both Maxwell and Chern-Simons
U�1� gauge fields. Our route to the O�4�-QCED3 duality is
described beginning in Sec. III A.

The starting point, here and in Ref. 8, is an XY antiferro-
magnet on the triangular lattice, whose Hamiltonian is

H = U�
r

nr
2 + J �

�rr��

cos��r − �r�� . �1�

Here, J�0 and the second sum is over nearest-neighbor
bonds. On every site of the triangular lattice r there is a U�1�
quantum rotor, with angular position ei�r and integer-valued
angular momentum nr, which satisfy the commutation rela-
tion �n ,ei��=ei�. This can be thought of as an effective
theory for a S=1 XY antiferromagnet. Alternatively, by the
usual quantum-classical correspondence, its partition func-
tion describes a classical XY antiferromagnet of stacked tri-
angular lattices, which has been extensively studied16–19 �see
also Ref. 8 for a more detailed overview of the literature�. In
this context, it is known that the model can realize three
phases �provided next-neighbor ferromagnetic exchange is
included�, which are: �1� paramagnet, �2� coplanar 120°
magnetic order �Fig. 1�, and �3� two different collinear mag-
netic orders �Fig. 1 and Ref. 8�. The paramagnet, coplanar
state, and one of the two collinear states meet at a multicriti-
cal point �upon tuning both J and the further-neighbor ex-
change�, which is the Wilson-Fisher fixed point of the O�4�
vector model. Either collinear state can arise adjacent to the
multicritical point, depending on the sign of a dangerously
irrelevant sixth-order term in the Landau theory �discussed
below�, and the distinction between the two collinear states
will not play an important role in the present discussion.

The symmetries of Eq. �1� will play a crucial role in our
analysis so we enumerate them here. The triangular lattice
space group is generated by a translation by one lattice con-
stant in the x direction �Tx�, a counterclockwise rotation by
� /3 about a lattice site �R�/3�, and a reflection Ry : �x ,y�
→ �x ,−y�. The operators nr and �r transform as scalars under
the space group. There is also a charge-conjugation �or spin-
flip� symmetry

(b)(a)

FIG. 1. �a� Depiction of the coplanar 120° ordered state, and �b�
one of the two collinear states. The filled circles represent sites with
zero ordered moment. The other collinear state is depicted in Ref. 8.
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C:nr → − nr, �2�

C:�r → − �r. �3�

Moreover the antiunitary time-reversal operation

T:nr → − nr, �4�

T:�r → �r + � . �5�

Finally there is the U�1� phase rotation, which sends �r
→�r+�. To distinguish it from other symmetry groups that
will arise later on, we shall refer to this symmetry as U�1�XY.

To expose the O�4� structure, one goes to a path-integral
description of the partition function in terms of �r���, where
� is imaginary time, and focuses on those configurations of
the phase field with lowest action. These are given by ei�r

�eiQ·rz1�r ,��+e−iQ·rz2�r ,��, where Q= �4� /3�x �the lattice
constant is set to unity�, and z1,2 are slowly varying functions
of r and �. The vectors �Q lie at the corners of the hexago-
nal Brillouin zone and are the ordering wave vectors of the
120° state. The action on z1,2 of the microscopic symmetries
is enumerated in Appendix B.

Constrained by the microscopic symmetries, one then
writes a continuum effective Lagrange density

L = 	�	Z	2 + rZ†Z + u�Z†Z�2 + v4	z1	2	z2	2, �6�

where terms of order 	z	6 and higher have been discarded,
and ZT= �z1z2�. For v4=0, the model’s continuous symmetry
is SO�4�, which is broken down to U�1�
U�1� for v4�0.
The sixth-order terms break the continuous symmetry down
to U�1�XY. The v4 and r terms are relevant perturbations to
the O�4� multicritical point while the allowed sixth-order
�and higher� terms are irrelevant. At the mean-field level, the
coplanar state arises when r�0 and v4�0, and has �z1�
�0 and �z2�=0 �or vice versa�. The collinear state obtains
for v4�0 and has 	�z1�	= 	�z2�	�0. Depending on the relative
phase of z1 and z2 two different collinear ordering patterns
are possible; this phase is determined by the sign of a dan-
gerously irrelevant sixth-order term.

Some of the properties of the O�4� critical point are
known from numerical simulations and high-order perturba-
tive calculations; see Ref. 5 for an extensive discussion �and
tabulation� of critical properties of O�n� models. Approxi-
mately, the critical exponent �
0.75, and 

0.027. These
exponents can be translated into scaling dimensions of fields
by dim Z= �1+
� /2
0.51 and dim Z†Z=3−1 /�
1.67.

It will be convenient to use the fact that SO�4���SU�2�

SU�2�� /Z2. We thus introduce the matrix

Z = �z1 − z2
�

z2 z1
� 
 . �7�

A general SO�4� rotation is realized by Z→ULZUR, where
UL,R�SU�2�. We shall thus refer to left and right SU�2�
rotations, denoted by SU�2�L,R, with conserved currents J	

L,R.
In terms of the fields,

J	
L =

1

2
tr�Z†���	Z�� , �8�

J	
R =

1

2
tr��Z†��	Z�� , �9�

where �= ��1 ,�2 ,�3� is a vector of the 2
2 Pauli matrices.
The U�1�XY symmetry is a subgroup of SU�2�R and is gen-
erated by 2�J0

R�z while J0
L generates rotations of the two

slowly varying fields z1 and z2 into one another.
One of the major pieces of evidence for the O�4�-QCED3

duality will be a dictionary identifying operators in the two
field theories. To that end, we now enumerate some impor-
tant operators in the O�4� model. Operators can be labeled by
��L ,�R�, the total angular-momentum quantum numbers of
SU�2�L
SU�2�R. It will sometimes be useful to also specify
�mL ,mR�, the projection quantum numbers of the angular
momenta along the z axis. Note that 2mR is the U�1�XY
charge. We have already discussed the boson field Z itself,
which transforms as �1/2, 1/2�, and the currents J	

L and J	
R,

which transform as �1,0� and �0,1�, respectively, and are both
vectors under Lorentz rotations �i.e., space-time rotations�.
We shall also consider the following nine Lorentz scalar bi-
linears in Z:

N = Z†�Z , �10�

I = ZT�i�2��Z , �11�

I� = �I��. �12�

Together these make up a �L=�R=1 multiplet. We shall also
consider the operators Or=Z†Z and Ov= 	z1	2	z2	2
− �1 /6��Z†Z�2. Or has �L=�R=0, and Ov is a member of a
�L=�R=2 multiplet with mL=mR=0. These play an impor-
tant role as they are the terms in the Lagrangian that must be
tuned to reach the O�4� critical point. Next, defining the O�4�
vector �i�i=1, . . . ,4� by z1=�1+ i�2 and z2=�3+ i�4, we de-
fine the operator C= i�ijkl�	���i�	� j���k���l, which is odd
under T and Ry. In a nonlinear sigma model version of the
O�4� field theory, where the constraint Z†Z=1 is imposed, if
C is integrated over space and time, and added to the action
it becomes the topological � term.20 While C does not have
any special topological significance as a local operator, we
shall refer to it as the topological density.

B. Dual model

In Ref. 8, boson-vortex duality was applied to the Hamil-
tonian of equation �1�. This is a straightforward procedure
for such a lattice XY model; here we review some crucial
aspects, and more details are found in Ref. 8. The degrees of
freedom of the dual model are vortices, which are bosons
residing on the sites of the dual honeycomb lattice �Fig. 2�,
and the vector potential and electric field of a noncompact
U�1� gauge field, which reside on the nearest-neighbor bonds
of the honeycomb lattice. Crucially, the vortices are at half
filling �an average of one-half vortex per honeycomb lattice
site�. This is a direct consequence of the frustration in the
original XY model: the XY exchange term of Eq. �1� can be
rewritten as −J��rr��cos��r−�r�+Arr��, where the flux asso-
ciated with the nonfluctuating vector potential Arr� is half a
flux quantum, or �, for each triangular plaquette. This back-
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ground flux has the consequence of forcing in half a vortex
per site �on average� in the dual theory.

For technical convenience, we shall take the vortices to
experience a hardcore repulsion, and only allow zero or one
vortex on each honeycomb site. Such a modification of mi-
croscopic parameters will not affect the universal low-energy
properties of phases and critical points in which we shall be
interested.

The dual Hamiltonian is

Hdual = U��̋ ��� 
 a�
˝

�2

+ J� �
�r̄r̄��

er̄r̄�
2 − tv �

�r̄r̄��

�eiar̄r̄�vr̄
+vr̄�

− + H.c.� . �13�

Here, r̄ labels the sites of the dual honeycomb lattice. er̄r̄�
and ar̄r̄� are, respectively, the electric field and vector poten-
tial residing on the honeycomb link joining r̄ and r̄�. On the
same link these satisfy the canonical commutation relation
�e ,a�= i. The first term is a sum over all hexagonal
plaquettes, and ��
a�

˝

is the lattice curl, which is the dis-
crete line integral of ar̄r̄� taken around the perimeter of a
given hexagonal plaquette. The latter two terms are sums
over nearest-neighbor honeycomb links. Because the vortices
are hardcore bosons, their creation, destruction, and number
operators are represented using the S=1 /2 spin operators
�vr̄

x ,vr̄
y ,vr̄

z�, satisfying the usual commutation relation
�vr̄

i ,vr̄�
j �= i�r̄r̄��

ijkvr̄
k. A vortex at site r̄ is created by vr̄

+=vr̄
x

+ ivr̄
y and destroyed by vr̄

−= �vr̄
+�†. The vortex number opera-

tor is Nv�r̄�=vr̄
z+1 /2. The Hamiltonian is supplemented with

the Gauss’ law constraint

�div e�r̄ = vr̄
z, �14�

where �div e�r̄=�r̄��r̄er̄r̄� is the lattice divergence of er̄r̄�. The
parameters of the dual Hamiltonian are U��U, J��J, and
the vortex hopping tv. It should be emphasized that Eq. �13�
is not an exact rewriting of the original XY model, and in-
stead should be thought of as a low-energy effective theory.
Conversely, the XY model of Eq. �1� can also be thought of

as a low-energy effective theory for dual model equation
�13�.

It is important to spell out the connection between the
U�1� gauge field and the original XY model degrees of free-
dom. The magnetic flux represents the U�1�XY charge den-
sity,

1

2�
�� 
 a�

˝

� nr, �15�

where ˝ is the honeycomb hexagon surrounding the trian-
gular lattice site r. Also, the electric field is related to the
U�1�XY current by

sin�2�er̄r̄�� � sin��r − �r�� , �16�

where �r ,r�� is the unique triangular lattice bond crossing the
honeycomb link �r̄ , r̄��. In the dual representation, U�1�XY
charge conservation is represented as the conservation of
magnetic flux. Moreover, insertion of U�1�XY charge �as by
acting with ei�r� is represented by the insertion of a quan-
tized 2� magnetic flux. Such flux insertions are space-time
magnetic monopole events, and will play a crucial role in our
analysis.

Under the space-group symmetry, er̄r̄� and ar̄r̄� transform
as pseudovectors, and vr̄

z as a pseudoscalar. vr̄
� transforms as

a scalar under Tx and R�/3, and Ry :vr̄
�→vr̄�

�, where r̄� is the
image of r̄ under the reflection. Under charge conjugation
both e and a are odd while

C:vr̄
z → − vr̄

z, �17�

C:vr̄
� → vr̄

�. �18�

Finally, under time reversal a is odd while e is even, and

T:vr̄
z → vr̄

z, �19�

T:vr̄
� → vr̄

�. �20�

The challenge at this stage is to use the dual Hamiltonian
to construct a continuum low-energy effective theory, which
would then provide a dual description of the O�4� critical
point. A natural approach would be to begin with Eq. �13�
and construct a functional integral in terms of the phase field
of the vortices v+�ei�. However, as the vortices are at half
filling, the resulting functional integral is plagued with Berry
phase terms, and does not directly lead to a useful continuum
limit. Instead, it is necessary to choose some other set of
variables that is amenable to a continuum description.

Alicea et al. chose to represent the vortices in terms of
fermions using statistical transmutation, with the price of in-
troducing a Chern-Simons gauge field �r̄r̄�.

8 In a flux-
smearing mean-field treatment, the vortices are fermions at
half filling on the honeycomb lattice �with zero background
magnetic flux�, and thus have a massless Dirac dispersion. To
include fluctuations about the mean-field state, one recouples
the Dirac fermions to both the Chern-Simons gauge field and
the Maxwell gauge field a that arose in the boson-vortex
duality. The resulting Euclidean Lagrangian is

FIG. 2. Relation between the dual honeycomb lattice �dashed
lines� and the triangular lattice of the original XY model �solid
lines�. Honeycomb lattice sites correspond to triangular lattice
plaquettes.
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L = �̄�	��	 + ia	 + i�	�� +
1

2e2�
	

��	����a��2

+
i

4�
�	�	������ + ¯ . �21�

The first term is the kinetic energy of the fermions and con-
tains the coupling to the two gauge fields. The second term
dictates that the a	 gauge field obeys Maxwell dynamics,
and the last term is the Chern-Simons term for �	. The co-
efficient of the Chern-Simons term is precisely that needed to
attach 2� flux and transmute fermions into bosons �and vice
versa�. The ellipsis represents other �important� perturbations
consistent with the underlying microscopic symmetries.

While this field theory is an intriguing dual representation
of the O�4� model, the presence of the Chern-Simons term
seriously hinders any direct analysis of it. It was conjectured
in Ref. 8 that the Chern-Simons term can simply be dropped
without affecting the critical properties but the arguments in
favor of this conjecture are not conclusive, and are question-
able given the later results of Ref. 9. Motivated in part by a
desire to avoid these issues, here we pursue a different ap-
proach that also leads to a fermionic gauge theory represen-
tation of the O�4� model but without any topological terms.

III. DUALITY BETWEEN O(4) MODEL AND QCED3

A. Vortex fractionalization route to dual effective theory

The present approach also begins with the dual Hamil-
tonian of equation �13�. The challenge is to construct a con-
tinuum effective theory that deals with the half filling of the
vortices but also avoids the difficulties associated with sta-
tistical transmutation and the Chern-Simons term. To do this,
we look to the theory of spin liquids in S=1 /2 Heisenberg
models, which are after all also models of half-filled hard-
core bosons. One route to describe spin liquids, in particular
critical spin liquids that lack a spin gap, is to formally rep-
resent hardcore bosons �or spins� as bilinears of fermionic
slave particles.21 Therefore it is reasonable to hope that a
similar approach can describe criticality—in particular, the
O�4� critical point—in the present model, and we shall argue
that this is indeed the case.22

We represent the vortices using the fermionic operators
f r̄�, where �=1,2:

vr̄
+ = f r̄1

† f r̄2, �22�

vr̄
z =

1

2
�f r̄1

† f r̄1 − f r̄2
† f r̄2� . �23�

With the local constraint f r̄�
† f r̄�=1 this change of variables

provides an exact rewriting of the model. In these variables
there is a local SU�2� gauge redundancy,23,24 which can be
exposed by defining

�r̄ = � f r̄1
†

�r̄ f r̄2

 , �24�

where �r̄=1�−1� for r̄ in the A �B� sublattice. The fermions
satisfy the local constraint equations �r̄

†	i�r̄=0, where 	i�i

=1,2 ,3� are the 2
2 Pauli matrices. This is simply the con-
dition that the SU�2� gauge charge is zero at every lattice
site. The vortex operators vr̄

� and vr̄
z can be written in mani-

festly SU�2� gauge-invariant forms, and so all physical op-
erators are gauge invariant.

To proceed, we pass to a functional-integral representa-
tion, where the action is S=SU�1�+Sf, where

SU�1� =
1

4J�
� d� �

�r̄r̄��

���ar̄r̄� − ��a0�r̄r̄��
2

+ U�� d��̋ �� 
 a�
˝

2 . �25�

Here, we have introduced the notation ��f�r̄r̄�= f�r̄��− f�r̄�
for a lattice derivative. The fermionic part of the action is

Sf =� d��
r̄

�r̄
†��� +

i

2
a0�r̄,�� +

i�0
i �r̄,��	i

2
��r̄

−
i

2
� d��

r̄

a0�r̄,�� + tv� d� �
�r̄r̄��

�eiar̄r̄�vr̄
+vr̄�

− + H.c.� .

�26�

Note that we have made the gauge transformation ar̄r̄�
→ar̄r̄�+� to change the sign of the last term. We have also
introduced the Lagrange-multiplier field �0

i �i=1,2 ,3�, which
enforces the SU�2� gauge constraint and can be thought of as
the time component of the SU�2� gauge field.

The last term of Eq. �26� is quartic in the fermion opera-
tors, and to arrive at a candidate low-energy effective theory
it can be decoupled using a Hubbard-Stratonovich field re-
siding on the bonds of the lattice. One searches for mean-
field saddle points of this field, and each such saddle point
�upon including often important fluctuations� leads to a low-
energy effective theory. Many distinct effective theories can
be generated in this way,21 and one of the challenges of this
approach is to decide which theory �if any� accurately cap-
tures the physics of the model at hand. In the present case we
are guided by the requirement that the effective theory
should be able to reproduce the phases and critical points
that are known to be present from the analysis of the original
XY model.

Rather than carry out the above mean-field procedure ex-
plicitly, we shall simply guess the form of the low-energy
theory. To do this we write down an effective lattice gauge
theory that reduces to the above model in a particular limit.
This is equivalent to choosing a particular mean-field saddle
point and then including the fluctuations about it. The effec-
tive lattice theory is obtained by replacing Sf with

Sf� =� d��
r̄

�r̄
†��� +

i

2
a0�r̄,�� +

i�0
i �r̄,��	i

2
��r̄

−
i

2
� d��

r̄

a0�r̄,��

+ t� d� �
�r̄r̄��

�e−iar̄r̄�/2�r̄
†Ur̄r̄��r̄� + H.c.� . �27�
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Here Ur̄r̄� is the spatial part of the SU�2� gauge field. It
should be noted that, because the gauge field ar̄r̄� is noncom-
pact, it is perfectly legitimate to have the object eiar̄r̄�/2 ap-
pearing in the action. We also include a Maxwell action Sg
for the SU�2� gauge field, with overall strength proportional
to the coupling constant 1 /g2. When g→� and t is small,
Ur̄r̄� can be integrated out perturbatively in t. At leading or-
der �t2�, one recovers the original dual Hamiltonian given by
the action S=SU�1�+Sf, with an additional nearest-neighbor
repulsive interaction between vortices. This interaction is not
important for our purposes, as it does not change the sym-
metry of the model and is not expected to affect its univer-
sality class.

On the other hand, if we take g small and U� large, then
the fluctuations of both gauge fields are suppressed, and in an
appropriate gauge Ur̄r̄�
1 and �0

i 
ar̄r̄�
a0
0. In this
mean-field limit the fermions are described by the Hamil-
tonian

HMFT = t �
�r̄r̄��

��r̄
†�r̄� + H.c.� , �28�

which is simply nearest-neighbor hopping of half-filled fer-
mions on the honeycomb lattice. The corresponding low-
energy theory is given by focusing on the excitations near the
Dirac nodes and reintroducing the coupling to the gauge
fields. The resulting Lagrangian density is

LQCED3 = �̄�− i�	��	 +
ia	

2
+

i�	
i 	i

2

��

+
1

2e2�
	

��	����a��2 +
1

2g2 f	�
i f	�

i . �29�

Here we have introduced the continuum Dirac field �,
which is related to �r̄ as discussed in Appendix A. � is an
eight-component object; these eight components arise from
the two-component nature of �r̄, the two bands needed to
represent each Dirac node, and the two-component flavor
index corresponding to the two distinct nodes in the Brillouin
zone. It is useful to define three different sets of Pauli matri-
ces acting in this eight-component space; each set corre-
sponds to its own type of SU�2� rotations. The 	i Pauli ma-
trices act in the SU�2� gauge space and generate gauge
transformations. The �i Pauli matrices act in the band index,
or Lorentz, space, and generate Lorentz transformations. Fi-
nally, the �i Pauli matrices act in the SU�2� flavor space and
generate flavor rotations. � resides in the tensor product of
these three SU�2� spaces, and products of different types of
Pauli matrices �which commute� should be understood as
matrix tensor products. The action of the various Pauli ma-
trices on � is given explicitly in Appendix A. It is conve-
nient to think of � as composed of Nf =2 flavors of four-
component Dirac fermions, where each flavor transforms as
a doublet under SU�2� gauge rotation and Lorentz transfor-
mations. Both flavors carry the same U�1� charge of 1/2 un-
der the dual gauge field a	.

We have also introduced the field strength of the SU�2�
gauge field,

f	�
i = �	��

i − ���	
i + �ijk�	

j ��
k , �30�

and the matrices �	 are defined in terms of the �i Pauli ma-
trices as

�	 = ��3,�2,− �1� . �31�

Finally, we have defined

�̄ = i�†�3. �32�

A number of theories similar to LQCED3, also involving
Dirac fermions coupled to gauge fields, are interesting in the
context of non-LGW criticality. This interest stems from the
fact that the microscopic symmetries can �in some cases� be
enough to forbid the addition of any relevant perturbations to
the action, and the fixed point thus describes a stable critical
phase.1,2,25 Such critical phases have been discussed in a va-
riety of physical settings.26–35

The global symmetries of LQCED3 play a crucial role in
our discussion. Aside from D=3 Poincaré invariance, the
continuous global symmetry is SU�2�
U�1�. The global
SU�2� consists of rotations between the two flavors of Dirac
fermions generated by the �i Pauli matrices. We thus dub it
SU�2�F, and it has the conserved current

J	
F = �̄�	�� . �33�

The global U�1� is simply the U�1�XY symmetry. Its realiza-
tion in LQCED3 follows directly from the boson-vortex duality
transformation, and in particular the identification of a	 mag-
netic flux and U�1�XY charge density �Eq. �15��. The associ-
ated conserved current is thus

j	
G =

1

2�
�	����a�, �34�

the flux of the a	 gauge field.
The field theory LQCED3, like other D=3 theories of mass-

less Dirac fermions coupled to gauge fields, is solvable in the
large-Nf limit.1,2,25,36–38 When Nf →� the fluctuations of the
gauge fields are suppressed, and for most purposes the phys-
ics is identical to that of noninteracting fermions. Expanding
about this limit, correlation functions can be calculated order
by order in 1 /Nf, and it is found that various operators ac-
quire anomalous dimensions. The principal result, then, is
that the large-Nf expansion describes an interacting critical
fixed point,1,2 which we assume survives down to the case of
interest, Nf =2. Below, we shall refer to the Nf =2 incarnation
of the large-Nf fixed point as the QCED3 fixed point, which
should be distinguished, of course, from the QCED3 field
theory.

B. Statement of the proposed duality

A brief statement of the proposed duality is that the O�4�
model and QCED3 possess identical low-energy physics. Be-
low, we shall elaborate on the meaning of this statement in
order to give a more precise statement of the duality. We then
outline the approach underlying the evidence for the duality,
which is described in the following sections.

It is useful to remark that both the O�4� model and
QCED3, provided arbitrary perturbations consistent with the
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underlying microscopic symmetries are added to each, are
expected to be valid low-energy effective descriptions of the
original model. This is expected simply because both were
derived from the same microscopic starting point. This
means that, in particular, any phase or critical point of either
the direct or dual low-energy theory is a phase or critical
point that presumably exists somewhere in the parameter
space of the original XY model. It is not, however, immedi-
ately obvious that the O�4� model and QCED3 describe
phases and critical points in the same part of parameter
space. This is the crucial fact that needs to be established for
the duality to hold.

With this remark in mind, the proposed duality can be
precisely stated as follows: beginning with LQCED3, by add-
ing operators consistent with the underlying microscopic
symmetries one can tune the theory to an O�4� critical point
identical to the Wilson-Fisher fixed point of the O�4� model.
We shall call the resulting fine-tuned Lagrangian LQCED3

c .
Moreover, the effective Lagrangian

Leff = LQCED3
c + rÕr + vÕv, �35�

where Õr and Õv are QCED3 operators identified below in
Sec. IV, is identical at low energy to the O�4� model La-
grangian of Eq. �6�. These statements essentially amount to
asserting that, indeed, the O�4� model and QCED3 describe
the same region of the original model’s parameter space.

Using the terminology introduced in Sec. I, this is a du-
ality between field theories. It is natural to ask if there is also
a duality between the O�4� Wilson-Fisher fixed point and the
QCED3 critical point. That is, are the O�4� and QCED3 fixed
points identical or distinct? We do not have a definitive an-
swer to this question but we will see it is plausible that the
two fixed points are dual. This is discussed further in Sec.
VI. Most of the evidence presented in Secs. IV and V per-
tains to the duality of field theories. However, we do present
some information on scaling dimensions from the large-Nf
expansion for the QCED3 fixed point. These results are not
relevant for establishing the duality between field theories
but they do provide some information about a potential du-
ality of fixed points.

In Sec. IV we set up a dictionary of operators between
QCED3 and the O�4� model. In order to do this, it will be
helpful to exploit the large-Nf understanding of the QCED3
fixed point; this provides a controlled understanding of the
field content of QCED3, which is our primary concern in
establishing the duality between field theories. Next, in Sec.
V, we describe how to access the stable phases of the original
XY model in the QCED3 description.

IV. EVIDENCE FOR THE DUALITY: OPERATOR
DICTIONARY

To construct a dictionary between QCED3 and O�4�
model operators, we begin by identifying the continuous glo-
bal symmetries of the two field theories. We identify the
SU�2�F flavor symmetry of QCED3 with SU�2�L of the O�4�
model, which means that the currents J	

F and J	
L should also

be identified. Next, we identify j	
G with 2�J	

R�z, as these are

the realizations of the U�1�XY conserved current in QCED3
and the O�4� model, respectively.

As QCED3 does not have manifest SU�2�
SU�2� sym-
metry, it is less clear how to identify the remaining compo-
nents of J	

R. An important part of the proposed duality is that,
at the O�4� critical point, the SU�2�L
U�1�XY global sym-
metry of QCED3 is enlarged to SU�2�L
SU�2�R. So, in par-
ticular, U�1�XY is enlarged to SU�2�R, which happens quite
explicitly in the O�4� model. Moreover, it should not be sur-
prising that it is possible to enlarge SU�2�
U�1� to SU�2�

SU�2� by a suitable tuning of parameters since both groups
at least have the same Cartan subalgebra. We shall identify
candidate QCED3 partners of the remaining components of
J	

R below.
To continue setting up our dictionary, it will be conve-

nient to break QCED3 operators into two classes. The first
class consists of all operators carrying zero U�1�XY charge,
or, equivalently, zero magnetic flux of the dual gauge field
a	. We refer to operators in the first class as nonmonopole
operators. The second class contains all monopole operators,
which do carry an a	 flux. The flux is quantized in multiples
of 2� simply because the U�1�XY charge is quantized in the
original XY model. Nonmonopole operators can be easily
represented in terms of the fermion and gauge fields. On the
other hand, as is typical for topological disorder operators,
monopole operators are more difficult to represent in terms
of the fields of the theory. However, they can be constructed
using the state-operator correspondence of conformal field
theory,39 and we shall take advantage of this approach here.

To be identified, two operators certainly must transform
identically under Lorentz transformations, SU�2�L �or,
equivalently, SU�2�F�, and U�1�XY. For nonmonopole opera-
tors, in each case we have also verified that, using the results
enumerated in Appendix B, each pair of identified operators
transforms identically under all the microscopic symmetries.
For monopole operators, on the other hand, it is only known
how to partially determine the action of microscopic sym-
metries up to a few unknown parameters.8,40,41 Here we shall
do this, following the approach of Ref. 41. In each case the
transformations of the corresponding O�4� model operator
can be determined completely using the results of Appendix
B, and are consistent with the partial results for the QCED3
counterpart.

We now proceed to identify some of the important O�4�
model operators with QCED3 counterparts.

A. O(4) bilinear N=Z†�Z

This is perhaps the simplest operator to identify with a
QCED3 partner. We identify N with

Ñ = − i�̄�� . �36�

Both N and Ñ transform as a vector under SU�2�L, a scalar
under Lorentz rotation, and carry zero U�1�XY charge.

In the limit Nf →�, the scaling dimension �Ñ of Ñ ap-
proaches two. An inspection of the diagrams involved in the
1 /Nf correction shows that the contributions from the U�1�
and SU�2� gauge fields2,38 simply add together, and
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�Ñ = 2 −
128

3�2Nf
+ O�1/Nf

2� . �37�

While this result is not to be trusted quantitatively, the quali-
tative trend that �Ñ�2 is believed to be reliable.2,42 This
should be compared to the fact that, in the large-n expansion
of the O�n� model, �N=1+O�1 /n�. It is reasonable that
these scaling dimensions become the same for the case of
interest �n=4 and Nf =2�.

B. O(4) field Z

Since Z carries U�1�XY charge of unity, it is a monopole
operator carrying 2� flux. To construct 2� monopoles in
QCED3, we need to make use of the state-operator corre-
spondence following Ref. 39. Accessible treatments of the
state-operator correspondence can be found in Refs. 43 and
44. Briefly, for a D=3 Lorentz and scale invariant theory,
such as the QCED3 fixed point, the state-operator correspon-
dence states that local operators of the field theory are in
one-to-one correspondence with quantum states of the same
theory quantized on the two-dimensional unit sphere. Scaling
operators �i.e., eigenoperators of a renormalization-group
transformation� are mapped to eigenstates of the Hamiltonian
on the 2-sphere, and the scaling dimension of the operator is
equal to the energy of the corresponding state.

Here we are primarily concerned with using the state-
operator correspondence to construct monopole operators, by
constructing the corresponding eigenstates of the Hamil-
tonian on the 2-sphere. This can be done for QCED3 in the
large-Nf limit, where the fluctuations of both gauge fields are
suppressed and the Nf →� Hamiltonian is simply that of Nf
flavors of noninteracting four-component fermions on the
unit sphere. As Nf is reduced from infinity down to the case
of interest Nf =2, gauge fluctuations will modify the states
and change their energies �and hence their scaling dimen-
sions�. However, even for Nf =2, the states constructed with
gauge fluctuations suppressed still correspond to local opera-
tors �although no longer to scaling operators�, and we still
use them to understand the field content of Nf =2 monopole
operators.

We shall see below that it will be useful to think in terms
of Nf2=2Nf two-component fermions, each of which is a
Lorentz doublet. A monopole operator with flux 2�q corre-
sponds to a state of these fermions with a background a	 flux
of 2�q on the sphere. Since the fermions carry a	 charge of
1/2, they feel only a flux of �q.

Let us now consider a 2�-flux monopole operator, where
the fermions feel a flux of � from a	; this violates the Dirac
quantization condition and is thus apparently problematic. To
illustrate the problem, recall that the monopole’s gauge field
can be represented using a Dirac string carrying the 2� flux
away from the center of the monopole in an infinitesimally
thin solenoid. However, since the fermions feel only a � flux
from the solenoid, it is a physical object, and the resulting
object is thus not a local operator. One might try to eliminate
the Dirac string using the mathematical technology of sec-
tions and the monopole harmonics of Wu and Yang45 but
Dirac’s quantization condition still enters there as a require-

ment that the transition function be single valued, and the
problem is not avoided.

However, the Dirac quantization condition can be re-
paired in the present case if flux in the SU�2� gauge field is
also present, and so this must happen in order to get a local
operator with unit U�1�XY charge. In particular, we can con-
sider putting a 2�-flux monopole in �	

3 —half of the two-
component fermions feel this as � flux, and the other half
feel it as −� flux. �Other strengths of monopoles can also be
considered but these either lead to states that will have
higher energy—and thus higher scaling dimension—or con-
tinue to violate the Dirac quantization condition.� Therefore,
combined with the overall � flux coming from a	, there will
be Nf two-component fermions moving in a background 2�
flux, and Nf fermions moving in zero flux. An issue that
immediately arises is that the resulting state is not invariant
even under global SU�2� gauge transformations. We return to
this below, after discussing the structure of the state in the
fixed gauge where there is a monopole in �	

3 and �	
1 =�	

2

=0. It should be noted that this configuration of the SU�2�
gauge field is not itself topologically stable but is induced by
the topologically stable monopole in the U�1� gauge field.

To understand the structure of the 2�-monopole states
and thus the corresponding operators, we shall need the spec-
trum of a single two-component Dirac fermion on the
2-sphere, moving in a uniform background flux 2�f . The
energy levels for 	f 	�1 are39

Ep = � �p2 + p	f 	 , �38�

where p is a non-negative integer. For f =0 the form of the
spectrum is the same but p is restricted to be positive and
thus there are no Ep=0 states. These levels are �2jp+1�-fold
degenerate, where jp= �1 /2��	f 	−1�+ p, and transform in the
�2jp+1�-dimensional representation of the SU�2� Lorentz
group �i.e., rotation symmetry of the 2-sphere�.

We now specialize to Nf =2, the case of interest. We rep-
resent � in terms of Nf2=4 two-component fermions 
a�,
where a ,�=1,2 and �T= �
11

T ,
12
T ,
21

T ,
22
T �. The a index

transforms as a doublet of SU�2�L, and the � index as a
doublet of SU�2� gauge rotations. This means that the �=1
��=2� fermions carry �	

3 charge of 1/2 �−1 /2�. Then 
11 and

21 feel flux f =1, while 
12 and 
22 feel f =0. The spectrum
is as illustrated in Fig. 3.

In order for the state to correspond to a gauge-invariant
operator, it must carry zero a	 charge. Moreover, we shall
see below that it must also carry zero �	

3 charge. Now, both
a	 and �	

3 , and hence the corresponding charges, change sign
under the charge-conjugation symmetry C, which acts as a
particle-hole transformation on the 
 fermions. Crucially, C
acts trivially on the � index of 
a� �see Appendix B� so it
does not exchange fermions feeling flux with those feeling
no flux. Acting with C on the state illustrated in Fig. 3 results
in another state of the same schematic form—the only
change is in the occupation of the zero mode states—which
must therefore have the same charges as the original state.
The only consistent possibility is that both a	 and �	

3 charges
are zero, as needed. Other states with the correct charges,
and higher energy, can be obtained from this state by moving
fermions between levels.
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Now we return to the question of gauge invariance of the
2�-flux monopole state. To correspond to a gauge-invariant
local operator, the state should be invariant under general
U�1� and SU�2� gauge transformations. We can construct a
gauge-invariant state starting with the gauge-fixed state dis-
cussed above, denoted by 	�0�. �Which of the two zero
modes is filled is not important for this discussion so we just
focus on a single state.� The gauge-invariant state is con-
structed by integrating over all possible gauge transforma-
tions:

	�� =� �dG1�� �dG2�G1G2	�0� , �39�

where G1 and G2 are unitary operators implementing U�1�
and SU�2� gauge transformations, respectively, and the inte-
grals are taken over all such unitary transformations. This
state 	�� is clearly gauge invariant but we need to check that
it does not vanish. This is done in Appendix C, where it is
shown that zero a	 and �	

3 charge is a necessary and suffi-
cient condition for 	�� not to vanish.

We are now in a position to discuss the quantum numbers
of the 2�-flux monopole states depicted in Fig. 3, and thus
those of the corresponding operator. The negative-energy
single-particle levels, when fully occupied, are invariant un-
der both Lorentz rotation and SU�2�L flavor. However, the
fermions feeling f =1 have two zero-energy Lorentz-singlet
levels, which are filled with a single fermion. This implies
that the overall state transforms as a Lorentz singlet but as a
doublet under SU�2�L. We thus denote the corresponding

monopole operator as the two-component object Z̃, where

Z̃T= �z̃1 , z̃2�, and Z̃ transforms as a doublet under SU�2�L and

a singlet under Lorentz rotation. The complex conjugate Z̃�

carries U�1�XY charge −1 and corresponds to a state on the
sphere with −2� flux in a	. These are the same quantum
numbers carried by the O�4� field Z �and its conjugate Z��,
and it is therefore reasonable to identify Z̃ and Z.

To work out the transformations of Z̃ under microscopic
symmetries, we follow the procedure of Ref. 41 �which is
based on that of Ref. 8�, using the transformations for the
fermion field � enumerated in Appendix B. The basic idea is

to use the facts that Z̃ is a SU�2�L doublet and carries unit
U�1�XY charge to write down the most general transformation
laws possible, which are

Tx:Z̃ → ei�T exp�4�i

3
�3
Z̃ , �40�

R�/3:Z̃ → ei�R�1Z̃ , �41�

Ry:Z̃ → ei�RZ̃ , �42�

C:Z̃ → ei�c�1Z̃�, �43�

T:Z̃ → cTZ̃�, �44�

where �T, �R, �R, and �c are arbitrary phases, and
cT= �1. We can partially determine these parameters by de-

manding that the action of the space group on Z̃ satisfy al-
gebraic relations satisfied by its generators, and by making

redefinitions of Z̃. The relations Ry
2=R�/3

6 =1 give the con-
straints �R=0,� and �R=�nR /3, where nR=0,1 , . . . ,5.
Also, TxR�/3

2 TxR�/3
−2 =R�/3TxR�/3

−1 gives �T=0. Next, we rede-

fine Z̃→ Z̃�=ei�ei��3
Z̃, where �=−�c /2, which has the effect

of setting �c�0 in the above transformation laws. If nR�3,
we choose �=0 while for nR�3 we choose �=� /2, which
has the effect of sending nR→nR−3 in the transformation
laws above. To summarize, the most general transformation
is then characterized by �T=�c=0; �R=0,�; cT= �1; and
�R=�nR /3, where nR=0,1 ,2. If we choose cT=−1 and �R
=nR=0, we obtain the same transformation laws as for the
O�4� field Z, so it is indeed consistent with microscopic sym-

metries to identify Z̃ and Z.

C. Bilinears I=ZT(i�2�)Z and I�

These objects have U�1�XY charge of �2. The QCED3
partners can thus be represented as states on the sphere
where a	 has 4� flux. In such a background gauge field,
each 
a� fermion feels 2� flux, and no flux of the SU�2�
gauge field is needed to satisfy the Dirac quantization con-
dition. There are now four zero-energy single-particle levels,
and the lowest energy monopole state is obtained by filling
all negative-energy levels and filling the zero-energy levels
with two fermions. We denote the vacuum state for �4� flux
with no zero-energy levels filled by 	� �, and let ca�

† create a
fermion in the zero-energy level corresponding to 
a�.
Focusing on +4� flux, we consider the class of states

Empty States

11 η21 η22η12

E

E = 0

Filled States
Filled States

Empty States

η

FIG. 3. Illustration of the 2�-monopole state whose correspond-
ing operator is the QCED3 partner of the O�4� field Z. The spectrum
of each two-component fermion 
a� is shown. The fermions 
11

and 
21 both feel a net 2� flux through the sphere. The energy-level
spectrum for each of these fermions is symmetric about zero energy,
where for each fermion there is a single zero-energy state. The 
12

and 
22 fermions feel no flux, and also have a spectrum symmetric
about zero energy but with no zero-energy state. All negative-
energy levels are filled, and one of the two zero mode states is filled
to obtain a state with zero total charge under both the a	 and �	

3

gauge fields.
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ca�
† cb�

† 	+ �. There are a total of six such states. Three of these
form a triplet under global SU�2� gauge transformations, and
thus do not correspond to a local operator. The other three
states are a singlet under global SU�2� gauge transforma-
tions, and a triplet under SU�2�L. These states can be labeled
by 	Ii� �i=1,2 ,3� and written

	Ii� = �i�2�����i�i�2��abca�
† cb�

† 	 + � . �45�

We denote the operator corresponding to these states by the

vector Ĩ while its complex conjugate Ĩ� is represented by the
corresponding states for a	 flux of −4�.

Just as for I �I��, Ĩ �Ĩ�� is a vector under SU�2�L, a Lor-
entz singlet, and carries U�1�XY charge of +2�−2�. Transfor-

mations of Ĩ under microscopic symmetries can be worked

out following the same procedure as above for Z̃, and can be
chosen to agree with those of the O�4� model operator I.

Alternatively, if we think of Ĩ as the composite operator Ĩ
� Z̃T�i�2��Z̃, then Ĩ and I transform identically, simply fol-

lowing from the identical transformations of Z̃ and Z.

D. Conserved current J�
R

We have already identified 2�J	
R�z with the gauge flux j	

G

but it remains to identify the other components �J	
R�x , �J	

R�y.
We define linear combinations

�J	
R�� = �J	

R�x � i�J	
R�y , �46�

so that �J	
R�� carries U�1�XY charge �2 and corresponds to a

QCED3 monopole operator.
To construct the corresponding monopole operator using

the state-operator correspondence, we let the operators da�	p
†

create a fermion in an energy Ep level for p= �1. Here the
index 	 transforms in the triplet representation of the Lor-
entz group. The states �	��da��+

† �ab
i db��−	Ii� have the correct

quantum numbers to be identified with �J	
R�+. However, there

is another natural set of candidate states. Defining the gauge-
triplet states

	Gi� = �i�2�ab��i�i�2����ca�
† cb�

† 	 + � , �47�

we see that the states �	��da��+
† ���

i da��−	Gi� also have the
correct quantum numbers to be identified with �J	

R�+. While it
is not clear which of these operators should be identified
with �J	

R�+, the more important point is that we have found at
least one operator with the correct quantum numbers.

E. O(4) “mass” term Or=Z†Z

This object must be identified with a QCED3 operator
that is invariant under all symmetries of the field theory.
Moreover, at the O�4� fixed point, it is the most relevant such
operator. Using the QCED3 fixed point as a guide, the most
relevant such operators in the large-Nf limit �all with scaling
dimension 4� are the Maxwell terms for the two gauge fields,

and the following set of three quartic terms: ��̄��2, ��̄���2,

and ��̄���2. These quartic terms are independent but to
form a complete basis for all singlet quartic terms the addi-

tional operator ��̄�	��2 must also be included. However, it
can be shown that this operator actually has scaling dimen-
sion 6 in the Nf →� limit.46 As Nf is reduced from infinity,
some of the above dimension-4 operators are expected to
become more relevant. Indeed, to identify the QCED3 and
O�4� fixed points, one of them must lower its dimension to
about 1.67, the dimension of Z†Z at the O�4� critical point,
while the others must remain irrelevant �dimensions greater
than three�. To have a clearer indication whether this is the
case, it would be useful to calculate 1 /Nf corrections to the
dimensions of these operators. While similar calculations
have appeared in the literature before,8,47 Nf =� shifts in

scaling dimension �analogous to the fact that ��̄�	��2 has
dimension 6 here� are present but were not taken into ac-
count; this will modify the results. We hope that future work
will resolve this issue, which would be useful in a variety of
situations where similar field theories arise.

F. Anisotropy term Ov= �z1�2�z2�2−(1 Õ6)Z†Z

This operator is a Lorentz singlet, carries zero U�1�XY
charge, and belongs to a �L=2 multiplet of SU�2�L �with
mL=0� so as with Or it is natural to identify it with a QCED3
operator quartic in the fermion fields. We have classified
quartic terms according to their transformations under the
Lorentz group and SU�2�L, and find that there are two inde-
pendent terms with the correct quantum numbers:

R0 = ��̄�3��2 −
1

3
��̄���2, �48�

R1 = ��̄�3�	��2 −
1

3
��̄��	��2. �49�

The O�4� operator Ov should be identified with the more
relevant of R0 and R1.

G. Topological density C

We identify the O�4� operator C with the QCED3 bilinear

C̃=−i�̄�, which is also odd under spatial reflections and
time reversal but invariant under other symmetries.

It may seem that this identification spells trouble for a
potential duality between O�4� and QCED3 fixed points. C is
quartic in the O�4� field and has three derivatives, thus ap-

pearing strongly irrelevant, while C̃, as a fermion bilinear,
naïvely appears likely to be relevant. However, two points
are in order. First, the O�4� model operator C cannot be gen-
eralized in a natural way to the O�n� case �or to d=3� so the
above intuition about its scaling dimension is suspect. Sec-

ond, the scaling dimension of C̃ to leading order in the
large-Nf expansion is

dim C̃ = 2 +
256

3�2Nf
+ O�1/Nf

2� , �50�

which, upon inspection of the diagrams involved, can be
obtained by simply adding the corresponding anomalous di-
mensions for QED3 �Ref. 42� and QCD3.47 Therefore, gauge
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fluctuations make C̃ substantially more irrelevant—the coef-
ficient of 1 /Nf is quite large. The striking contrast from the

behavior of the Ñ bilinears, which become more relevant
with decreasing Nf, is interpreted physically in Ref. 42. It is

then plausible that C̃ continues to be irrelevant, perhaps
strongly so, down to Nf =2.

V. EVIDENCE FOR THE DUALITY: STABLE PHASES

We shall now show that the three stable phases of O�4�
model �equation �6��—the paramagnet, and coplanar and col-
linear ordered states—are realized simply in QCED3. While
we do not have enough control over QCED3 at Nf =2 to
determine the phase diagram, the fact that all the known
phases of the O�4� model can be realized is an important
piece of evidence in support of the proposed duality.

We begin by considering the paramagnetic phase, which
can be represented in the dual description by condensation of
vortices.7 We need to find a vortex condensate that does not
break any microscopic symmetries, and to that end we con-
sider

V = �T�i	2��i�2��i�2�� , �51�

which creates a single vortex. V is invariant under Tx and T,
and is a scalar under R�/3. Under Ry and C, V→V†. Working
in a fixed gauge, condensation of V means that �V�=ei�	V	
�0. If �=0, then clearly the condensate preserves the micro-
scopic symmetries. In fact, even if ��0, the apparent break-
ing of Ry and C is a gauge artifact, as these symmetries can
be restored by supplementing them with an appropriate
gauge transformation. Alternatively, one can always choose a
gauge such that �=0.

We can understand the effect of this vortex condensation
on the fermion spectrum, at the mean-field level, by adding
the term �� /2��d2r�V+V†� to the mean-field Hamiltonian. It
is easily seen that the dispersion relation becomes E�k�
= ��k2+�2, and a gap of 2� is opened. In this gapped state,
the SU�2� gauge field will become confining, thus removing
single fermion excitations from the spectrum. Also, the U�1�
gauge field will be in a Higgs phase, and its photon mode
and excitations carrying nonzero U�1�XY charge will acquire
a gap. Therefore all excitations are gapped, no symmetries
are broken, and we have a description of the paramagnet.

To access the magnetically ordered phases, we consider

the Lagrangian L=LQCED3+� · Ñ. At the mean-field level

�and also at the QCED3 fixed point�, the addition of � · Ñ
will open a gap in the fermion spectrum. As a result the
SU�2� gauge field will become confining, and monopole op-
erators of the U�1� gauge field will acquire an expectation
value—the latter phenomenon corresponds to the spontane-
ous breaking of U�1�XY symmetry and XY magnetic order.
The photon of the U�1� gauge field remains gapless, and
corresponds to the spin-wave mode of the magnetically or-
dered state.

To determine the pattern of magnetic order, we note that

because � · Ñ breaks various space-group symmetries, it
leads to a gapped “vortex insulator,” where the pattern of

lattice symmetry breaking depends on �. The vortex insula-
tors that result are the same as those arising in the discussion
of Ref. 8 so we give only a brief summary of the results here.
If �=�zz, the resulting state is a vortex “charge-density
wave,” where vortices preferentially occupy one of the two
honeycomb sublattices. This corresponds to the 120° copla-
nar magnetically ordered state.8 On the other hand, if �
=�xx+�yy, the resulting state is a vortex “valence bond
solid,” �VBS�, where vortices hop back and forth preferen-
tially on a subset of honeycomb lattice bonds. As detailed in
Ref. 8, the vortex VBS states that arise here correspond to
the collinear magnetically ordered states.

VI. DISCUSSION

We have given evidence for a rare example of non-
Abelian duality �without supersymmetry� in d=2, between
the O�4� model and QCED3 field theories. Both were de-
rived as low-energy effective descriptions of the same trian-
gular lattice frustrated XY model. The O�4� model arose from
a standard Landau theory treatment. QCED3 was obtained
by combining the Abelian boson-vortex duality of the lattice
model with a fermionic slave-particle treatment of the vortex
degrees of freedom. By setting up an operator dictionary
between the two field theories, and showing that both can
realize the three stable phases of the original XY model, we
argued that both field theories describe the same low-energy
sector of the XY model and are thus dual.

As discussed in Sec. III B, this result is to be understood
primarily as a duality between field theories. It is natural to
ask whether it is also a duality between the O�4� and QCED3
fixed points, assuming that the QCED3 fixed point exists for
Nf =2. The two possibilities are that either the O�4� and
QCED3 fixed points are identical, or they are distinct. The
latter possibility would mean that, for example, the O�4�
model realizes both fixed points somewhere in its parameter
space. While we are not aware of any evidence for this, it is
hard to rule out, especially if the Nf =2 QCED3 fixed point is
highly unstable and requires tuning of several parameters.
However, given the available evidence on scaling dimen-
sions of operators at the two fixed points, it is certainly plau-
sible that they are identical. Numerical simulations of
QCED3 for various values of Nf could potentially shed some
light on this issue.

The O�4�-QCED3 duality suggests a number of directions
to pursue further understanding of d=2 non-Abelian duality.
One can certainly explore whether similar constructions, per-
haps starting from other lattice models, lead to other duality
relations. Another natural question is whether there are con-
nections between the present results and d=2 dualities of
supersymmetric field theories.14,15 Perhaps upon suitably
breaking supersymmetry in a pair of dual theories, the O�4�-
QCED3 duality—or other, related dualities—can be ob-
tained.

Finally, it is interesting to remark that the O�4�-QCED3
duality can be viewed as a bosonization of QCED3, where
the bosonized form is simply the O�4� model. If more ex-
amples of similar dualities are discovered, and better under-
stood, they might eventually be useful as a kind of d=2
bosonization.
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APPENDIX A: CONTINUUM LIMIT FOR FERMIONS

Consider the mean-field Hamiltonian

HMFT = t �
�r̄r̄��

��r̄
†�r̄� + H.c.� , �A1�

where the sum is over nearest-neighbor links of the honey-
comb lattice. We will take the continuum limit for the low-
energy excitations �which are massless Dirac fermions�, and
give the relationship between continuum and lattice fields.

We use the two-site unit cell labeled by �R̄ , i�, with i
=1,2, and define the Fourier transform

�R̄i =
1

�Nc
�

k
eik·R̄�ki, �A2�

where Nc is the number of unit cells in the lattice. The
Hamiltonian then becomes

HMFT = t�
k

��k1
† �k2

† �H�k���k1

�k2

 , �A3�

where

�H�k��11 = �H�k��22 = 0, �A4�

and

�H�k��12 = �H�k��21
� = 1 + e−ik·a2 + eik·�a1−a2�. �A5�

The Dirac nodes are at k= �Q, where Q= �4� /3�x. Put-
ting k= �Q+q and expanding to first order in small q we
find

H�Q + q� = −
�3

2
�qx�

1 + qy�
2� , �A6�

and

H�− Q + q� =
�3

2
�qx�

1 − qy�
2� , �A7�

where �i are 2
2 Pauli matrices. We define the continuum
spinors

�̃1�q� � ��Q+q,1

�Q+q,2

 , �A8�

and

�̃2�q� � ��−Q+q,1

�−Q+q,2

 , �A9�

Note that �̃a �with a=1,2� is a four-component object.
It is convenient to act on this space with tensor products

of two different kinds of Pauli matrices. The �i Pauli matrices

introduced above act in the space labeling the two sites of the
unit cell, and the 	i Pauli matrices generate SU�2� gauge
transformations. For example, the action of these Pauli ma-
trices on �̃1�q� is given by

	i�̃1�q� � �	i�Q+q,1

	i�Q+q,2

 , �A10�

and

�i�̃1�q� � ���i�1��Q+q,�

��i�2��Q+q,�

 , �A11�

where in each entry there is an implied sum over �=1,2.
The continuum Hamiltonian takes the form

Hc = v� d2q

�2��2 ��̃1
†�− qx�

1 − qy�
2��̃1 + �̃2

†�qx�
1 − qy�

2��̃2� ,

�A12�

where v is the velocity. To make this look like the conven-
tional Dirac Hamiltonian we define

�1 � ei�/6�3�̃1, �A13�

�2 � e−i�/6�1�̃2, �A14�

and we have

Hc = v� d2q

�2��2�a
†�qx�

1 + qy�
2��a. �A15�

We then define the eight-component object

� = ��1

�2

 . �A16�

We introduce another set of Pauli matrices, �i, acting in this
two-component flavor space. For example,

�1� = ��2

�1

 . �A17�

APPENDIX B: SYMMETRIES

Here we enumerate the action of the microscopic symme-
tries of triangular lattice XY model of equation �1� �listed in
Sec. II A�, on both the O�4� model and QCED3 fields.

The action of the symmetries on the O�4� model field
ZT= �z1 ,z2� is easily obtained from ei�r �eiQ·rz1�r ,��
+e−iQ·rz2�r ,��, the relationship between lattice and con-
tinuum fields discussed in Sec. II A. One obtains the follow-
ing results:

Tx:Z�r,�� → exp�4�i�3

3

Z�r,�� , �B1�

R�/3:Z�r,�� → �1Z�r�,�� , �B2�

Ry:Z�r,�� → Z�r�,�� , �B3�

C:Z�r,�� → �1Z��r,�� , �B4�
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T:Z�r,�� → − Z��r,�� . �B5�

For R�/3 and Ry, r� is the image of r under the corresponding
symmetry operation.

To obtain the action of the symmetries on the QCED3
fermion field �, one first obtains their action on the lattice
fermion �r̄. The action of each symmetry is chosen so that
�1� the vortex operators vr̄

i , which are bilinears of �r̄, have
the correct transformation properties, and �2� HMFT is invari-
ant. Because �r̄ is not a gauge-invariant object, the symmetry
group acting on it should be thought of as a projective sym-
metry group.21 One feature of this situation is that, because
HMFT is invariant under global SU�2� gauge transformations,
with each symmetry operation we are free to make an arbi-
trary global SU�2� gauge transformation. The action of the
symmetries on � is then easily determined by the relations
between continuum and lattice fields given in Appendix A.
Several analyses of this kind have appeared in the literature
�see, for example, Ref. 37� so we simply quote the results:

Tx:��r� → exp�4�i

3
�3
��r� , �B6�

R�/3:��r� → �i�1�ei��3/6��r�� , �B7�

Ry:��r� → − �i	2��i�2����r�� , �B8�

C:� → �1�1��, �B9�

T:� → �i	2��i�2��i�2�� . �B10�

Combined with the requirement that the action be invari-
ant, these transformations determine the transformations of
the SU�2� gauge field �	

i . We also enumerate the transforma-
tions of the U�1� gauge field a	. Under Tx, both �	

i and a	

are invariant. Under R�/3, both a0 and �0
i transform as scalars

while the spatial components rotate as vectors. Under the
remaining symmetries,

Ry:�a0,a1,a2� → �− a0,− a1,a2� , �B11�

Ry:��0
i ,�1

i ,�2
i � → ��0

i ,�1
i ,− �2

i � , �B12�

C:a	 → − a	, �B13�

C:��	
1 ,�	

2 ,�	
3 � → �− �	

1 ,�	
2 ,− �	

3 � , �B14�

T:a	 → − a	, �B15�

T:�	
i → �	

i . �B16�

Note that the transformations of �	
i depend on the arbitrary

choice of global SU�2� gauge transformation in the corre-
sponding transformation of �.

APPENDIX C: NONVANISHING OF 2�-flux monopole state

Here we show that 	��, the gauge-invariant 2�-flux mono-
pole state constructed in Eq. �39� from 	�0�, the gauge-fixed

state, is nonzero. The Hilbert space of the theory on the
sphere is a tensor product of fermion and gauge-field Hilbert
spaces, and we can write

	�0� = 	f0� � 	ã	���,�̃0,	
i ���� , �C1�

where 	f0� gives the state of the fermions, and the latter fac-
tor the state of the gauge fields in the vector potential basis.
�= �� ,�� specifies the angular position on the sphere. The
vector potential states of the gauge-field Hilbert-space form
an orthonormal basis. In spherical coordinates, the vector
potentials above are given by ã�= �̃�

i =0 and

ã� =
1 − cos �

2 sin �
, �C2�

�̃�
i �i =

1 − cos �

2 sin �
�3. �C3�

This corresponds to a monopole with 2� flux piercing the
sphere in both a	 and �	

3 .
To show that 	���0, it is enough to show that ��0 	��

�0. Consider a general gauge transformation G=G1G2 act-
ing on 	�0�, where G1 is a general U�1� gauge transformation
and G2 is a general SU�2� gauge transformation. Below, we
show that either

G	�0� = 	�0� , �C4�

or

G	�0� = 	f� � 	ā	���,�̄0,	
i ���� , �C5�

where ā	� ã	 or �̄	
i � �̃	

i . In the latter case, ��0	G	�0�=0.
This implies that

	�� =� �dG1�� �dG2�G1G2	�0� = C	�0� + 	��� , �C6�

where C�0 and ��0 	���=0. Therefore ��0 	��=C�0, and
	�� is indeed nonzero.

It is clear that 	�� would be zero if either the a	 or �	
3

charge were nonzero. The reason is that the integral of Eq.
�C6� is a projection onto gauge-singlet states; if either the a	

or �	
3 charge is nonzero, this projection must vanish. This

shows that it is necessary for these charges to vanish in order
to have nonzero 	��.

Let s��� be the generator of U�1� gauge transformations,
and ti����i=1,2 ,3� the generators of SU�2� gauge transfor-
mations. Then a general U�1� gauge transformation can be
written G1=exp�i�d�����s���� and a general SU�2� gauge
transformation is G2=exp�i�d��i���ti����. Because 	�0�
has zero charge under a	 and �	

3 , it is invariant under global
U�1� gauge transformations ����� constant�, and a global
SU�2� gauge transformation where �1=�2=0 and �3��� is
constant.

It is easy to see that any global SU�2� gauge transforma-
tion other than that above changes �̃	

i so it rotates 	�0� into a
new state orthogonal to 	�0�. The same is true for any non-
global U�1� gauge transformation ����� not constant� be-
cause all such transformations change ã	. We now show that
all nonglobal SU�2� gauge transformations change �̃	

i , which

NON-ABELIAN DESCENDANT OF ABELIAN DUALITY IN… PHYSICAL REVIEW B 79, 184429 �2009�

184429-13



implies the result we needed to show �i.e., that G either
leaves 	�0� invariant or rotates it into an orthogonal state�.

Under an SU�2� gauge transformation, the object A	���
= �̃	

i ����i transforms as

A	 → UA	U† + iU�	U†, �C7�

where U=U���=exp�i�i����i�. In order for �̃	
i to be invari-

ant, the above relation must become an equality for both 	
=� and 	=� components. Since A�=0, we therefore must
have ��U=0, and U is independent of �. The 	=� equation
gives

iU��U† =
1 − cos �

2 sin �
��3 − U�3U†� . �C8�

Since the term in brackets on the right hand is independent of
�, and the left-hand side must be independent of �, the only
consistent possibility is that both ��U=0, which implies that
�i is constant and the gauge transformation is global, and
also U�3U†=�3, which implies �1=�2=0. Therefore, there
are indeed no SU�2� gauge transformations leaving �̃	

i in-
variant other than that identified above.
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